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The 1~ball property and the strong q-ball property in a Banach space were
studied by D. Yost [Bull. Austral. Math. Soc. 20 (1979), 285-300; Math. Scand. 50
(1982), 100-110]. G. Godini ["Banach Space Theory and Its Applications" (A.
Pietsch, N. Popa, and I. Singer, Eds.), Vol. 991, Springer-Verlag, New York/Berlin,
1983J, gave geometrical characterizations of the subspaces with property (*), as
well as with the l~ball property. D. Yost [Math. Scand. 50 (1982), 100-110J gave
an example that has the 1~-ball property but not the strong I~ball property. In the
present paper, property (S) is introduced and characterizations of the strong q-ball
property are given. The subspaces of C(T) which have the q-ball property are
characterized, where T is compact and connected. © 1989 Academic Press. Inc.

1. INTRODUCTION

In this section, we give some relevant definitions. In Section 2, we study
the 1!-ball property. In Section 3, we define the property (S), find a relation
between the 1!-ball property and the strong 1!-ball property, and charac­
terize the latter property. In the last section, we show that if M is a finite­
dimensional subspace of C( T), where T is a connected compact Hausdorff
space, then M has the I!-ball property if and only if M is the one-dimen­
sional subspace of constant functions.

Let X be a normed linear space, and for each x E X and r;::: 0 we denote

B(x, r)= {yEX: Ily-xll ~r}.

For a nonempty subset M of X and each x E X we denote by PM(X) the
set of all best approximations of x from M, i.e.,

PM(x) = {moE M: IIx -mo II = d(x, M)}.
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We denote D M= {x E X: PM(X) # 0}. The set M is called:

(1) proximinal in X if DM = X.

(2) Chebyshev in X iffor each x EX, PM(X) is a singleton.

Throughout this article, unless otherwise specified, M will denote a linear
(not necessarily closed) subspace of X. We also denote PM'(O) =
{XEX:OEPM(X)}.

For x E X and £> °we denote by P';w(X) the set of all £-approximations
of x out of M, i.e.,

P';w(X) = {moE M: Ilx- ma II ~ d(x, M) + £}. (1.1)

Notice that for £=0, P~(X)=PM(X),Clearly for each £~O we have

P';w(X) = M" B(x, d(x, M) + £) (1.2 )

and for each £> 0, P';w(x) # 0.
For a set A c X and £~ 0, the closure of the £-neighborhood of A is the

set

Using the convention that d(x, 0) = 00, it follows that for A = 0 we have
A, = 0 for each £~ 0.

Remarks 1.1 [10]. (1) For each XEX and O~£l ~£2 we have

P%(XLz £1 c B(x, d(x, M) + £2)'

(2) Let XED M' The following statements are equivalent.

(i) d(m, PM(x))= Ilx-mll-d(x, M) for any mEM;

(ii) P';w(x) = PM(x),,,M for any £~O.

LEMMA 1.2. Let M be a subspace of X, £ > 0, and x E X. Then

(1) P';w(x) # 0.
(2) P';w(x) is a closed, bounded, convex subset of M.

Proof (1) Since £> 0, it is clear.

(2) Let mEP';w(x). Then Ilx-mll~d(x,M)+£. So Ilmll~llxll+

d(x, M) + £. Thus P';w(x) is bounded.
Let {mn}cP';w(x) satisfy mn-+m. Since {mn}cP';w(x), Ilx-mnll~

d(x, M) + £ for each n. Taking the limit as n -+ 00, Ilx - mil ~ d(x, M) + £.
Thus mE P';w(x), so P';w(x) is closed.



334 SUNG HO PARK

Ilx-Am l -(1-A)m2 11 = IIA(X-m l )+(I-A)(X-m2 )11

~), Ilx -mIll + (1- A) Ilx -m2 11

~d(x, M)+e.

Thus AmI + (1- A)m2 E P~(x) and P~(x) is convex.

2. THE q-BALL PROPERTY

D. Yost defined and studied the 1!-ball property. G. Godini generalized
the concept of semi-L-summand-proprty (*). By using it, she gave
geometrical characterization of the 1!-ball property.

DEFINITION 2.1 [17]. A subspace M of a normed linear space X has
the 1!-ball property in X if the conditions mEM, XEX, ri~O (i= 1, 2),
MnB(x,r2 )=l0, and IIx-mll<r l +r2 imply that MnB(m,rdn
B(x, r2 ) =10.

DEFINITION 2.2 [14]. Let M be a subspace of a normed linear space X.
M is called a semi-L-summand in X if M is Chebyshev in X and the metric
projection PM: x -. M satisfies

for each x E X.

DEFINITION 2.3 [10]. The subspace M of X is said to have property
(*) in X, if for each xEDM and each mE M we have that

d(m, PM(x))= Ilx-mll-d(x, M).

Remark 2.4. Note that when M is Chebyshev with property (*), then
for each x E X,

for any mEM.

Thus when M is Chebyshev, the following statements are equivalent.

(i) M is a semi-L-summand;

(ii) M has property (*).

THEOREM 2.5 [10]. Let M be a linear subspace of X. The following
statements are equivalent.



THE 1i-BALL PROPERTY 335

(1) M has the 1!-ball property in X;

(2) The relations x E X, r1,r2;;: 0 with d(x, M) ~ r j < r2' Ai =
{mEM: IIx-mll =ri} U= 1, 2), Al # 0, and m 2EA 2 imply that

(3) For each XEX and O~el <e2 we have

whenever P%(x) =I 0.

COROLLARY 2.6 [10]. Let M be a linear subspace of X.

(1) If M has the 1!-ball property in X, then M has property (*) in X.

(2) If M is proximinal and has property (*) in X, then M has the
1~-ball property in X.

Corollary 2.6 suggests the problem of finding a subspace which has
property (*) and the H-ball property, but is not proximinal.

EXAMPLE 2.7. [There is a subspace which has property (*) and the 1~­

ball property, but is not proximinal]. Let M be a dense proper subspace
of a normed linear space X. For each x E X\M, d(x, M) =0, but x ¢ M.
Then D M= M; i.e., M is not proximinal. Let xEDM' Then d(m, PM( x)) =
11m - xII and Ilx - mll- d(x, M) = Ilx - mil for each mE M, so
d(m, P M(X)) + d(x, M) = Ilx - mil for each mE M. Thus M has property (*)
in X. Now we want to show that M has the 1~-ball property in X.
Let mEM, XEX, ri~O, i=1,2, MnB(x,r2)=l0, and Ilx-mll<r1+r2'
Since Ilx-mll<r l +r2, B(m,r l )nB(x,r2)#0, so [x,m]nB(m,rdn
B(x, r2) =I 0· There exist xo, x~ E X such that [xo, x~] = [x, m] n
B(m, rd n B(x, r2), Ilx - x~1I = r2, and 11m - r211 = r l . Assume Xo= x~. Then
IIx-mll = IIx-xoll + IIxo-mll ='1 +'2' This is a contradiction. Thus
xo=lx~ and I\x-xoll <'2 and IIm-x~11 <rl'

Claim: ~(xo + x~) E BO(m, ril n BO(x, r2);

Ilx- !(xo+ x~)11 = Hx -xoll + !lIx- x~1I < r 2

Ilm-!(xo+x~)1I =!lIm-xoll +!lIm-x~11 <r1'

Thus !(xo + x~) EBO(m, rd n BO(x, r2)' In particular, BO(m, r1) n BO(x, r2) is
a nonempty open set with 0 =I M nBO(m, rl)n BO(x, '2)c M n B(m, '1) n
B(x, '2)' Hence M has the H-ball property in X.

COROLLARY 2.8 [10]. Let M be a complete subspace of X. Then M has
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the 1!-ball property in X if and only if M is proximinal and has property (*)
in X.

Remark 2.9. D. Yost [17] proved that if M is a closed subspace of a
Banach space X which has the 1!-ball property, then Mis proximinal in X
and PM is Lipschitz continuous.

COROLLARY 2.10. Let M be a linear subspace of a Banach space X. The
following statements are equivalent.

(1) M is proximinal and has property (*);

(2) ForeachxEXand8],82~0,

Proof (1) => (2) Suppose that (l) holds. Let x E X and 8], 82 ~ O. If
8 1 = 8 2 =0, then it is clear. If one of 8] and 82 is zero, there is nothing to
prove from Remarks 1.1. Thus we may assume 8 1 #- 0 and 82 #- O. Put
8 = 8 1 + 8 2 , Since 8] > 0 and 82> 0,0 < 8[ < 8 and 0 < 8 2 < 8. By Theorem 2.5
and Corollary 2.6,

and

Thus P'h(x) n M = Pit(x) n M.

(2) => (l) Suppose that (2) holds. First we will prove that M is
proximinal. Suppose not, i.e., there exists XEX such that x¢D M . By (2),

and

Since PM(x) = 0, PM(x)e2=0 so PM(x)e2nM=0. But Pit(x)nM=
Pit(x) # 0 since 82 > O. This is a contradiction. Thus M is proximinal.
Finally we must show that M has property (*). Let x E X. Put 8 1 ~ 0 and
82 =0. Then

P'h(x) = PM(X)el n M.

By Remarks 1.1, M has property (*).

Combining Corollaries 2.8 and 2.10, we obtain the following Corollary.

COROLLARY 2.11. Let M be a complete subspace of a Banach space X.
Then the following statements are equivalent.
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(1 ) M has the 1!-ball property in X;

(2) M is proximinal and has property (*) in X;

(3) ForeachxEXandI>1,1>2~0,
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THEOREM 2.12 [9]. Let M be a finite-dimensional subspace of X. If PM
is Lipschitz continuous, then PM has a Lipschitz continuous selection which
is homogeneous and additive modulo M.

COROLLARY 2.13. If a finite-dimensional subspace M has the 1!-ball
property, then PM has a Lipschitz continuous selection which is homogeneous
and additive modulo M.

Remark. D. Yost [17] proved that if M has the 1!-ball property, then
PM has a continuous selection which is homogeneous and additive
modulo M.

3. THE STRONG 1!-BALL PROPERTY

In this section we will define property (S) to characterize the strong
l!-ball property.

DEFINITION 3.1. Let M be a subspace of a normed linear space X. We
say that M has property (S) in X if for each x E X and each I> ~ 0 with
P~(x) # 0, P~(x) is proximinal in M.

LEMMA 3.2. Let M be a subspace of a normed linear space X, x E X and
1»0. Assume that PM(x) is proximinal in M. IfmoEM\PM(x)" then

Proof Claim: d(mo, PM(x))-I>~d(mo,PM(x),nM). Suppose not, i.e.,
there exists m' E P M(X), n M such that limo - m'll < d(mo, P M(X)) - 1>. Then

I> < d(mo, P M(X)) -limo - m' II

inf limo - mil - limo - me II
mE PM(X)

= inf {llmo-mll-llmo-m'll}
mE PM(X)

~ inf Ilm-m'll =d(m', PM(X))~I>
mEPM(x)
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since m'EPM(x),. This is a contradiction. Thus d(mo, PM(X))-S~
d(mo, P M( x), n M) and the claim is proved.

Next we want to prove that d(mO,PM(x))-s=d(mo,PM(x),nM).
Suppose that d(mo, PM(x))-s<d(mo, PM(x),nM). Since PM(x) is
proximinal in M, there exists m' E P M(X) such that limo - m'll =
d(mo, PM(x)). Then

and

d(mo, P M(X)) - S= II mo - m' - ~I~oo~;"I~ II

";3d(mo, PM(x),nM).

This is a contradiction. Thus d(mo, PM(x),nM)=d(mo, PM(x))-s.

Remark 3.3. For any proximinal subset A of X and for each s > 0, A, is
also proximinal in X. We can prove it by a similar argument to Lemma 3.2.

LEMMA 3.4. Let M be a subspace with property (*) in X and x E X. If
P M(x) is proximinal in M, then P~Ax) is proximinal in M for each s > O.

Proof Let s > 0 be given. Suppose that P M(X) is proximinal in M. Let
mo E M be fixed. If moE P~(x), there is nothing to prove. So we may
assume mortP~(x). Then d(mo, P~(x))>O and IIx-mo ll >d(x, M)+s.
Since P M(X) ¥- 0 is proximinal in M, there exists m' E M such that
Ilmo-m'll =d(mo, PM(x)) and Ilx-m'll =d(x, M). Then

Ilmo-m'll ";3l1x-moll-llx-m'll

> d(x, M) + s - d(x, M) = s.

Claim:

, s(mo-m')
m + limo _ m' II E P p'.t(x)(mo).

Since mo, m' E M, m' + s(mo - m')/Ilmo- m' II EM. Since

II
s(mo - m') II

x-m' -llmo-m'll ~ Ilx-m'll +s=d(x, M)+s,

, s(mo-m') ,
m + Ilmo-m'll EPM(X).
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By Remarks 1.1 and Lemma 3.2,

II
' 6(mo-m')11 '

mo-m -llmo-m'll = Ilmo-m 11-6

=d(mo, P M(X))-6

=d(mo, PM(x).nM)

=d(mo' P~Ax)).
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So m'+6(mo-m')/llmo-m'IIEPp'M(X)(mO)' Thus P~(x) IS proximinal
in M.

THEOREM 3.5. Let M be a subspace of X which has property (*) in X.
Then the following statements are equivalent.

(1) M has property (S) in X;

(2) (i) for each xEDM, PM(x) is proximinal in M.

(ii) for each x E X\D M' P~( x) is proximinal in M for each 6 > O.

Proof By the definition of property (S), (1) = (2) is clear.

(2)=(1) By Lemma 3.4, for each xEDM, P~(x) is proximinal in M
for each 6>0 when PM(x) is proximinal in M. Thus M has property (S)
in X.

COROLLARY 3.6. Let M be a proximinal subspace of X which has
property (*) in X. Then the following statements are equivalent.

(1) M has property (S) in X;

(2) For each x E X, P M( x) is proximinal in M.

EXAMPLES 3.7. (l) Every closed subspace of a Hilbert space has
property (S).

(2) Every finite-dimensional subspace of any normed linear space has
property (S).

Indeed, let M be a finite-dimensional subspace of X. Since all sets P~(x)

are compact, P~(x) is proximinal in M.

(3) Every Chebyshev subspace with property (*) has property (S).

Indeed, let M be a Chebyshev subspace with property (*). Since for each
x E X, P M(X) is a singleton, P M(X) is proximinal in M. By Corollary 3.6, M
has property (S).

(4) Every subspace having the strong 1!-ball property [Defini­
tion 3.8] has property (S). [We will prove this later.]
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DEFINITION 3.8 [18]. A subspace M of a normed linear space X is said
to have the strong 1!-ball property in X if the conditions mE M, x EM,
ri~O (i=1,2), MnB(x,r2)#0, and Ilx-mll~rl+r2 imply that
M n B(m, rd n B(x, r2) # 0.

Clearly the strong 1!-ball property implies the 1!-ball property. But the
converse is not true as D. Yost [18] has shown.

EXAMPLE 3.9 [18]. (1) Suppose that M has the 1!-ball property in X.
If M is reflexive, or if X is a dual space and M a weak (*) closed subspace,
then M has the strong 1!-ball property.

(2) Let X be the disc algebra (i.e., the sup normed space of functions
continuous on L1, the closed unit in if, and analytic on the interior of L1).
Let M = {x EX: x( 1) = O}. Then M has the l!-ball property but does not
have the strong 1!-ball property.

THEOREM 3.10. Let M be a linear subspace of a normed linear space X.
If M has the strong 1!-ball property in X, then M has property (S).

Proof Let xEX. If xED M, then MnB(x,b)#0, where b=d(x,M).
Let mE M be given. If mE PM(X), then there is nothing to prove. We may
assume m ¢: P M( x). Set r = d(m, P M( x)). Since M has property (*),
d(m, PM(x)) = Ilx -mll- d(x, M). Thus Ilx- mil = r + b. Since M has the
strong 1!-ball property in X,

M n B(m, r)n B(x, b) # 0.

Choose moE M n B(m, r) n B(x, b). Then 11m - moll ~ r = d(m, PM(X)) and
moEPM(x). Thus 11m-moll =d(m, PM(x)). Hence PM(x) is proximinal in
M. By Lemma 3.4, P~Ax) is proximinal in M for any 8 > O. If x¢: D M' then
M n B(x, b) = 0 where b = d(x, M). So P M(X) = 0, but P~(x) # 0
for 8> O. We want to prove that P~(x) is proximinal in M for 8> O. Let
m E M and 8 > 0 be fixed. If m E P~(x), then there is nothing to prove.
If m ¢: P~(x), then Ilx - mil> d(x, M) + 8. Let rl = d(x, M) + 8 and
r2= Ilx - mil· Since P~(x) # 0, there exists mJ E P~(x) such that
Ilx - mIll ~ d(x, M) + 8 = rl . Since Ilx - mil> d(x, M) + 8 = rl , there exists
m'E[mJ,m] such that Ilx-m'll=r l , where [ml,m]={Aml+(I-A)m:
o~ A~ 1}. Therefore

and
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d(m, Ad = r2 -r l = Ilx-mll-d(x ·M)-f..

Claim: d(m, Ad = d(m, P';w(x)). Clearly d(m, P';w(x)) ~ d(m, A I) SInce
Ale P';w(x). Suppose d(m, P';w(x)) < d(m, A d. Then there exists
moEP';w(x)\A I such that 11m-moll <d(m, Ad. Since Ilx-mll>
d(x, M) + f. and IIx - m o II < d(x, M) + f., there exists mt E Em, mo] such
that Ilx-mtll =d(x, M)+f., i.e., mtEA I and Ilm-mtll < lim-moil.
This is a contradiction to 11m - mo II < d(m, A I)' Thus d(m, P';w(x)) =
d(m,Ad=r2-r l . Since MnB(x,rd#0 and Ilx-mll=r2=(r2-r l )+
r\> M n B(m, r2 - rd n B(x, rd # 0. Choose mt* E M n B(m, r2 - r l ) n
B(x, rd. Then mt* E P';w(x) and 11m - mt* II ~ r2- r l = d(m, P';w(x)). So
Ilm-mt*11 =d(m, P';w(x)). Thus P';w(x) is proximinal in M.

Now we can characterize the strong I ~-ball property.

THEOREM 3.11. Let M be a subspace of X. The following statements are
equivalent.

(l) M has the strong 1~-ball property in X;

(2) M has the 1~-ball property and property (S) in X.

Proof (l) => (2) Since the strong 1~-ball property implies the i ~-ball
property, (l) => (2) follows from Theorem 3.10.

(2) => (1) Since M has the 1~-ball property in X, Theorem 2.5 implies
that for each x E X and 0 ~ f. 1 < f. 2 , we have

(3.1 )

whenever P%(x) # 0. Let x E X, mE M, r l , r2~ 0 be chosen such
that Ilx-mll~rl+r2 and MnB(x,r2)#0. Then d(x,M)~r2' If
Ilx-mll~r2' then mEMnB(m,rl)nB(x,r2)' If Ilx-mll>r2, let

f. 1 =r2-d(x, M) and f. 2 = Ilx-mll-d(x, M). Then 0~f.1 <f.2 , mEPit(x),
and P%(x)=MnB(x,r2)#0, since r2=d(x,M)+f. I • By (3.1) and
Ilx-mll ~rl +r2,

d(m, P%(X))~f.2-f.1= Ilx-mll-r2~rl'

Since M has property (S), P%(x) is proximinal in M. Then there exists
ml E P%(x) such that 11m - mIll ~ rl' Since ml E P%(x), Ilx - mill ~
d(x, M) + f. 1 = r2' Thus ml E M n B(m, rd n B(x, r2)' Therefore M has the
strong 1~-ball property in X.

Remark 3.12. By Example 3.7 and Theorem 3.10, every Chebyshev
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subspace with property (*) has the strong l!-ball property; i.e., every
semi-L-summand has the strong l!-ball property.

THEOREM 3.13. Let M be a closed subspace of a Banach space X. The
following statements are equivalent.

(1) M has the strong l!-ball property in X;

(2) M is proximinal with property (*) and property (S) in X;

(3) M is priximinal with property (*) and for each x E X, PM(X) is
proximinal in M;

(4) For each x E X\M there exists mx E PM(X) such that

Ilx - mJ = Ilxll - IlmJ.

Proof The equivalence (1) ¢> (2) follows from Corollary 2.6 and
Theorem 3.11.

(2)¢>(3) The implication (2)=(3) is clear while (3)=(2) follows
from Lemma 3.4.

(3) =(4) Suppose that (3) holds. Since M is proximinal with
property (*), for each x E X,

Ilx - mil = d(x, M) + d(m, P M(X))

for each mE M. Let xEX\M be given. Since 0 EM, IIxll = d(x, M) +
d(O, P M(X)). Since PM(X) is proximinal in M, there exists mx E P M(X) such
that Ilxll = Ilx-m,11 + Ilm,ll. Thus (4) holds.

(4) = (3) Suppose that (4) holds. Clearly M is proximinal. Let
xEX\M be fixed and mE M. Then x - m EX\M. By (4), there exists
mx_mEPM(X-m) such that Ilx-m-mx_mll = Ilx-mll-llmx-mll. Since
mx_mE PM(X - m), there exists m' EPM(X) such that m, _m= m' - m. Since
Ilmx-mll = Ilm'-mll = Ilx-mll-llx-m'll = Ilx-mll-llx-m"ll:( Ilm-m"ll
for each m" E PM(X),

Ilm,-mll = lim-m'll =d(m, PM(x)).

Since Ilx-m-m,_mll = Ilx-m'll =d(x,M), Ilx-mll =d(x,M)+
d(m, PM(x)). Since XEX and mEM were arbitrary, M has property (*)
and for each XEX, PM(x) is proximinal in M. Thus (3) holds.

COROLLARY 3.14. Let M be a finite-dimensional subspace of a Banach
space X. The following statements are equivalent.

(1) M has the l!-ball property in X;
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(2) For each x E X\M there exists m, E P M(X) such that

Ilx-m,11 = Ilxll-llmxll·
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Proof Since M is finite dimensional, M has the strong 1~-ball property
if and only if it has the 1~-ball property. Thus (l) <0> (2) follows from
Theorem 3.13.

Remark 3.15. No nontrivial proper subspace in a strictly convex
Banach space has the 1~ball property.

Proof Let M be a subspace of a strictly convex Banach space which
has the 1~-ball property. Then, by Remarks 2.9 and 3.12, M has the strong
1~-ball property. By Theorem 3.13, for each x E X\M, there exists
m, E P M(X) such that

Since X is strictly convex, x = IY.m x for some scalar IY.. This is a contradiction
to xEX\M.

4. THE (STRONG) 1~-BALL PROPERTY IN C(T)
WHERE T Is A CONNECTED COMPACT HAUSFORFF SPACE

Let T be a compact Hausdorff space. Then C( T) is the Banach space of
real continuous functions defined on T with sup norm:

Ilfll = sup If(t)l·
lET

If fEC(T), denote f~l(O) by Z(f) and if AcC(T), let Z(A)=
n{Z(f): f E A}.

It is known [4] that a function f of norm one is in PM1(O) if and only
if there is a continuous linear functional L defined on C( T) such that
L(m)=O for all mEM and IILII = 1 =L(f). In the following lemma, let f
be in PM!O) with Ilfll = 1 and let L be a continuous linear functional on
C( T) such that L(m) = 0 for all m in M and II LII = 1 = L(f).

LEMMA 4.1 [4]. If m is in P M(f), then m vanishes on supp( L).

Remark. In the above Lemma, supp(L) is the support of a correspond­
ing regular Borel measure.

LEMMA 4.2 [2, 11]. Let T be a compact Hausdorff space. If M is a
finite-dimensional subspace of C( T), then the following statements are
equivalent.
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(1 ) PM is lsc;

(2) PM has a continuous selection s with the nulleigenshaft; i.e.,
s(x) =0 for each XE P M

1(0);

(3) Z(PM(f)) is open for each fEP M
1(0).

Remark. H. Kruger [11] proved (1)<,>(2). Blatter eta/. [2] estab­
lished (1) <'> (3).

THEOREM 4.3. Let T be a connected compact Hausdorff space and M a
proximinal subspace of C(T). If Z(PM(f)) is open for each fE PM1(0), then
M is Chebyshev.

Proof By Lemma 4.2, Z(PM(f))#0 for any fEPM1(0). Since Tis
connected and Z(PM(f)) # 0, Z(PM(f)) = T. Thus P M(f) = {O} for each
f E ker PM' Hence M is Chebyshev.

COROLLARY 4.4. Let T be a connected compact Hausdorff space and M
be an n-dimensional subspace of C( T). If M has the 1~-ball property in C( T),
then M is Chebyshev.

Proof Since M has the 1~-ball property property, PM is Lipschitz
continuous. By Lemma 4.2 and Theorem 4.3, M is Chebyshev.

A. Lima [14] studied the intersections of balls. He defined semi­
L-summand and gave a characterization of the subspaces in C( T) which
are semi-L-summands (d. Definition 2.2).

THEOREM 4.5 [14]. Let M be a closed subspace of C(T) where T is a
compact Hausdorff space. Then M is a semi-L-summand in C( T) if and only
if M=C(T), M= {O}, or M=span(f)for some fEC(T) with If I = 1.

COROLLARY 4.6. Let M be an n-dimensional subspace where T is a con­
nected compact Hausdorff space, 1~ n < 00. Then the following statements
are equivalent:

(1) M has the 1~-ball property in C( T);

(2) M is a semi-L-summand in C(T);

(3) M = span(1) where 1(t) = 1 for any t E T.

Proof (1) <'> (2) By Corollary 2.8, Corollary 4.4, and Definition 2.2, M
has the g-ball property in C( T) <'> M has property (*) in C( T) and is
Chebyshev <'> M is a semi-L-summand in C( T).

(2)<'>(3) follows from Theorem 4.5.

Remarks 4.7. (1) When T is connected and M is finite dimensional in
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C(T), semi-L-summand, l~-ball property, and strong l~-ball property are
equivalent properties for M.

(2) Let T be a compact Hausdorff space. Assume that M is
Chebyshev. Then M has the 1~-ball property in C( T) if and only if
M = C( T), M = (0), or M = span(f) for some f E C( T) with If I = 1.
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